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SUMMARY

Previous analyses of the stability of towed bodles stabilized by
fins have generally assumed that the towing cable remained steady. These
theories failed to predict the violent motion of these bodies which has
been observed to occur in practice above a certain airspeed. This motion
involves oscillations of the cable. A theoretical investigation was there-
fore made of the stability of oscillations of the cable.

This theoretical analysis indicates that oscillations traveling
downwind along the cable are amplified by aerodynemlic forces when the
airspeed is greater than the speed of propagation of waves along the cable.
The osclllations are slightly damped when the airspeed 1s less than the
speed of wave propagation. Waves traveling upwind along the cable are
always damped.

This theory provides a possible explanation for the violent motions of
towed alrspeed heads which appear above a certain speed. These oscillla-
tions are attributed to cable oscillations which originate near the alrplane
and are amplified by aerodynamic forces as they travel down the cable.

Means are discussed for increasing the speed at which these oscillatlons
became violent.

INTRODUCTION

A previous analysis of the stability of a body stabilized by fins
and suspended from an airplene (reference 1) indicated that such a device
would be atable when towed at a considerable distance behind an airpleane
because of the damping action of drag forces on the cable. The type of
motion considered in that analysis was a long-period motion in which the
cable was assumsd to remain steady. In practice such bodies, which are
used as towed airspeed heads, generally remain stable in flight up to a
certain speed but above this speed violent short-period oscillations have
been observed involving pltching and vertical motions of the body and
osclllations of the cable. These oscillations have frequently resulted in
the body's breeking loose from the cable even though the cable attachment
was designed to withstand a load of 25 times the weight of the body. In
meking airspsed calibrations with towed alrspeed heads, the speed at which
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instability has occurred has been found to depend on the type of alrplans
from which the body is lowered, the flap and power settings, and the point
on the airplane from which the body is suspended. It has been thought that
this violent motion was caused by the action of the turbulent weke of the
alrplane on the cable, inasmuch as the cable trails almost stralght back
fram the airplane at high alrplane speeds. The violence of the motlons of
the towed body has, however, been difficult to explain on this baslis alone
because the osclllatlon usually appeasrs to be small near the alrplane. The
possiblility was therefore investigated that oscillations of the cable
originating near the airplane might be amplified by the action of air forces
as they were propagated down the cable.

SYMBOLS

A undetermined fumction of x
a velocity of wave propagation along cable’ in vacuum M}
C constant )
c abbreviation used in trigonametric derivation (a@
Cp drag coefficient of cable when perpendicular to alr stream
d gbbreviation used 1n trigonametric derivation

dy cos G, Jy .

( Yy B—t)

D dilameter of cable
F force
e base of natural logarithms
g acceleration due to gravity
1= V1
K = Cp5D sin 2u,
P period of oscillation of cable
S equivalent flat-plate area

T tension in cable

i time

~
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u . real part of root of equation (see formula (12))
() veloclity of propagation of wave along cable
v imaginary part of root of equation (see formula (13))
v alrspeed
x distance along cable
¥y distance perpendicular to cable
a angle of attack of cable
7 = cos o, + g;;i:ggi
2
"
A root of equation (u + iv)
1} mass of cable per unit length
A wave length of osclllatlion of cable
p " air density
® circular frequency of forced osclllatlon of cable
Subscript:
o] equilibrium value

ANATYSTS

When a dlsturbance is Introduced at the end of a long cable which
is In tension, the wave form of the disturbance remalns unchanged as it
travels down the cable provided that aerodynemic forces acting on the
cable are neglected. A physical picture of the effect of aerodynamic
forces on a cable in an alr stresm may be obtained from figure 1. In
this figure a wave is shown at successlive instants traveling down a cable
in the same direction as the air velocity. This figure shows that 1f the
ailrspeed 1s considerably greater than the speed of the wave the aerodynemic
force on each element of the cable acts in the seme directlon as the
transverse (in this case, vertical) motion of the element. The air forces
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would therefore be expected to feed energy Into the oscillation and thereby
to Increase the amplitude of the osclllation as it travels down the cable.
The conclusion may be reached fram similar conslderations that 1f the air-
speed is the same as the speed of propagation of the wave no aerodynamic
effects wlll be present, because in this case there is no relative tramsverss
motion between the alr and the elements of the cable. If the airspeed is
less than the speed of propagation of the wave, the alr forces will have a

slight damping effect.

A more detajled analysis is necessary to determine the rate of damping
or amplification of the waves as a function of airspeed and also to find
whether the aerodynamic forces affect the speed at which the wave travels
dowvn the cable. ZFor this purpose the differential equation of motion of
the cable will be set up. The method of analysis 1s similar to the treat-
ment given in reference 2 of the propagation of transverse waves along a
cable where the motion of elements of the cable is resisted by viliscous
demping forces.

The method of calculating the forces on an element dx of a cable
undergoing a small transverse osclllation is illustrated in figure 2. In
1ts equilibrium position, the cable lies along the x-axis and makes an
angle a, with air stream of velocity Vo. The forces acting normal to

the cable are now determined. The transverse force on an element of the
cable due to tension in the cable is ‘

F(tenston) = 7 L + 1 S;?”?;%de)ﬂ%& (1)

The gravitational force normal to an elemsnt of the cable, if the air
stream is assumed to be horizontal, is

dF(gravity) = -pg dx cos g (2)

The aerodynasmic force 1s assumed to act normal to the cable element and is
gliven by the formula:

4¥(aerodynamic) = Cp-g-V2D ax sin°o (3)
The variation of force with sin?m is in accordance with the concept that
the force on the ceble is due to the camponent of relative velocity normal
to the cable. Measurements of the air forces on cables have shown good .
agreement with this law (reference 3). This formula holds only in the

positive range of angles of attack. The force should %ary as -sin®a for
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negative values of «. The neglect of the reversal in force at negative
velues of o will not lead to any difficulty inasmich as the cable will
be assumed to have an initlal poslitive angle of attack so that the angle
of attack willl never became negative when the cable performs small
oscillations.

The angle of attack of the cable element is

cos <,

In this expression, a, may be a large angle but the remaining terms are
assumed to be small. Hence, the expression for o has the form

a=c¢c-4
where d 1s a small quantity. The expression sinfa 1s glven by the
trigonametric formula:

cos 2¢ cos 24 + sin 2¢c sin 24
2

sinla = gin2(c - 4) = -;—' -

Since 4 1s small, cos 24 =1 and sin 2d = 24

Hence,

cos8 2¢c + 24 sin 2¢
2

2
sincc:l—
2

si_n2c - 4 sin 2¢

The values for ¢ and d may be placed in this expression as follows:

sinea, = sinea,o - (% + cosvcco g{)sin 2a, (%)

The relative velocity of the cable element and the air V is glven by the
expression: '

a

V=Vo - sin ag

¥

If higher—order terms are neglected,

V2=V02-2\Toa—zsina,

PR — —— - -
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The aerodynamic force on the cable element, obtained by substituting

the value for sin®e from formula (4) and the value for v from
formula (5) in formula (3), is as follows:

4F (aerodynemic)
p 2 oy cos Qg
=CD§-D670 -QVO-a—tsinm; 81n2%-8_x+ - g—isingao ax
Vo - 51—; 8in o,

If higher—order terms are neglected,

2 9 P

P w2 2
4F(aerodynemic) = CD"Q"DVO dx sinag - ~ CDEDVO dx sin 2a,

3y

o)
- gi-: CD E ]_NO (sin 2(1.0 cos G, + 2 sin3cco> dx (6)

For brevity, let
p

K=CD2

D sin 2ay,

The equation of motion of the cable element, obtalned by equating the
force due to temsion, equation (1), the gravitational force, equation (2),
and the serodynemic force, equation (6), to the inertia force on the
element, is

&y P 2 2 Sy 2
T——édx-ugdxcoscno+CDEDVQ dxsinao-E—KV'odx
QI 2sin3a.o 8& .
- KV cos a4 + ———— tdx = dx (7)
o 0
ot 8113.120,0 Bt2

]

The term dx may be canceled. The resulting equation is one of the
differential equations governing the shape and motion of the cable.

Another equation, obtained fram the equilibrium of forces acting along

the cable, would be required to obtain a solution for the cable shape.

This additional equation willl not be used in the present analysis, however,
because this analysis is concerned only with the motion of the cable, which
involves deviations fram its equilibrium condition. For the same reason,
the steady-state terms will be dropped from equation (7). When the cable
is in equilibrium, the steady aerodynamic force, given by the third term,
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may be balanced partly by gravity or partly by a gradual curvature of the
cable, as represented by & constant portion of the first term. This
curvature will cause a varlatlon of angle of attack along the caeble. Also,
the tension may vary along the cable. It wlll be assumed, however, that the
ceble in equilibrium is straight and that the angle of attack o, and the
tension are constant. Calculations of cable shape given in reference 1 show
that a cable towing a body behind an airplane is falrly straight over a
large part of its length. In any case, the analysis of the cable motion
over a reglon of the cable should be approximately correct if the angle

of attack i1s taken as that existing over the portion of the cable under
consideration and if the radius of curvature i1s large campared to the

wave length of the disturbances that are being considered.

To further simplify the notation let the trigonametric term

2 BiDBQD
cos @y + —— equal 7. Also let
siln 2a,
2 L
1]
and
KVo2
"= or

After the steady-state terms are amitted and the remaining terms
rearranged, equation (7) becames

2y .y 1P
L-aE - E- (8

a2 dt2

Equation (8) is the differential equation governing small transverse
deviations of the cable fram its equilibrium position. This equation
differs fram the equation for a cable with no aerodynemic forces by the
addition of the second and third terms, which depend on aerodynamic effects.
The equation without these two terms 1s the weoll-known wave equation. The
golution of the wave equation shows that waves of arbitrary shape travel
along the cable in elther direction with the velocity a, and that the form
and amplitude of the waves remain unchanged as they travel. (See, for
exemple, reference L.) ' -

In order to study the propagation of waves along a cable in an air
stream, it will be assumed that ons polnt on the cable is forced to
oscillate sinusoldally. The cable is assumed to extend fram this point
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to 1nfinity in either direction. A solution will be obtained for the
resulting steady-state oscillation of the cable.

In a steady-state forced oscillation, all elements of the cable

oscillate with the farcing freguency. For purposes of analysis, this
oscillation 1s represented in the exponential form:

y = Aei®t (9)

where A 1s a function of x. This expression gives the time dependence °
of the motion of the elements of the cable, hence

% = A_’Lmeim;'3 =

ot o
and

By pion - o2,

a_t2

If these expressions are substituted in equation (8) , the equation beccmes

By _ pndr (e 4y L B) _
o 2nt <v0 1o 2 =0 (10)

The solution of this equation gives the position dependence of the motion
of the cable elements. This solution has the form:

y = CerX , (11)

If this value is substituted in equation (10), the values of A are
obtained as roots of the equation -

x2—2n>.-(%31m-‘9—§>=o

o &
whence
: 2
2 w
N L = AT
Y% a2

This expression must be separated into its real and imaginary parts.
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Let A =u + 1v. The following expressions are found for u and v:

, u=n<l+v-.2§) (12)

5 \
2 2 2 2
_gy LB 2 1fo® _ 2 wy?
. (0]

By cambining the solutlions for the dependence of the cable position on the
values of t (equation (9)) amd. x (equation (11)), the motion of the
cable is represented by the expression

7 = cof wHiv) x+iwt

Or, 1f the real part of thils expression 1s taken as the actual motion of
the cable,

y = Ce¥X cos (wt + vx) (14)
DISCUSSION OF RESULTS

The solution for the motion of the cable, equation (14), indicates
"that tralns of waves are traveling up and down the cable fram the arigin
where the sinusoldal disturbance is applied. The waves traveling downwind
correspond to a megative value of the term v, and those traveling upwind
correspond to a positive value, as explained in reference 4.

The value of wu, which determines the rate of Increase or decrease 1in
amplitude of the waves with distance fram the arigin, Is different for
the two sets of waves, because of the occurrence of the term v 1n the
expression for u (formmla (12)). When v 1is positive, corresponding
to waves traveling upwind, both terms in the formula for u are positive.
The amplitude of the oscillations, which 1s proportlional to eUX, always
decreases with increasing distance upwind fram the origin because this
direction corresponds to negative values of x.

When v 1is negative, corresponding to waves traveling downwind, the
terms in the formmla for u have opposite slgns. For small values of the
airspeed, u will be negatlive, and the oscillation will therefare decrease
with increasing distance downwind from the origin, because thls dlrectlion

v ey e Mae A i o n . N AT 4 v < rmma o m s gy e g < T = ot it 7 i e ey A = = -
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carresponds to positive values of x. " For high values of alrspeed, however,
u will be positive, and the oscillation will increase with increasing dis-
tance downwind from the origin.

The wave length of the disturbance propagated along the cable is

~ . ax
A -
The period 1s
2%
P ==

If U 1is substituted for - S in the formila for u (formula (12)), the

formula beccmes
27U
v T]( ) Vo)

The value of 7 18 plotted as a function of a, in figure 3. For
small values of ay the valus of 7 1s very close to 1.0. In this case

the value of u 1s approximately

o)

The value of 1 1s proportional to V02. The dependence of the valus of u
on the veloclty is therefore given by an expression of the form:

u<==V2

o ~ U,

It may be seen that when Vo =T (that is, when the alrspeed is the seme

as the velocity of wave propagation) the value of u 1s zero- Under these
conditions a disturbance travels downwind along the cable without change in
amplitude. The solution therefore agrees with the physical concept that

for small angles of attack the aerodynamic forces will have no effect when
the wave moves at the seme speed as the alr. When the airspeed is less than
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the velocity of wave propagation, waves traveling downwind will be damped.
When the airspeed 1s greater than the velocity of wave propagation, waves
traveling downwind will increase in amplitude.

In the practical problem of an airplane towing a body by means of a
cable, disturbamces introduced at the airplane travel downwind along the
cable wntil they reach the body. A part of these waves is then reflected
upwind, the nature of the reflected wave depending on the amount of restraint
provided by the body. The solution shows that the waves traveling upwind are
well demped campared to the waves traveling downwind. The amplitude of the
waves near the alrplane, and in practice, over the greater part of the
cable, may therefore be studied by considering only the waves moving down-
wind and neglecting the reflected waves or the nature of the restraint at the
far end of the cable. The value of u 1is proportional to 17 (formula (12)).
But

KV02 CD 5 DV sin 2ab

'rl= 2T = 2T

For emall angles of attack, sin 2a, 1s proportional to ag. Hence far

small angles of attack, the value of u, which determines the rate of
amplification of the oscillations, i1s proportional to Qo+ A towed cable

will ordinarily be pltched with respect to the air stream but not yawed.
Any oscillations that occur would therefore be expected to take place in a
vertical plane. In practice, the unstable motion of towed airspeed heads
at high speeds has been observed to involve longitudinal motlons pre-
dominantly.

The predicted lack of amplification of oscillations at zero angle of
attack results fram the assumption of infinitesimal oscillations and fram
the assumption that the aerodynemic force varies as sin2a. Thus, the
lift-curve slope for the cable 1s assumed to be zero at zero angle of attack.
It may be expected that oscillations of finite amplitude will be amplified’
even at zero angle of attack because such oscillations will result in the
develomment of aerodynamic forces on the cable elements.

Typical effects of airspeed on waves traveling along a towed cable
have been calculated. The characteristics of the cable were taken as those
of a cable used in conjunction with towed alrspeed heads. These charac-
teristices are as follows:

Dy dMCR « + + ¢t e e e e e v e e e e a e e e e e e e e .. 3/8
My Blug per foot . « .« .« . .« . . L . . 0 . 04t it e 4 e . . 0.00l65
T, pounds e e s s s 4 4 4 4 e s e s s e s s s e e s s s e e e e . . 30
Cp O -

P, slug per cubic foot . . . ... 0000000 .. 0.00238




12 ‘ ‘ NACA TN No. 1796

In estimating the speed of propagation of the waves fram the valus of v

2
(formula (13)) it was found that the term ZEQE%_ wasg very emall compared
Vo
with other terms In the expression. The value of v then is almost
exactly ’

Furthermore, for values of ® corresponding to frequencies greater than
3 cycles per second, the value of n2 is small compared with @g. For the
a

assumed cable, then, and for frequencies of oscillation greater than 3 cycles
Dper second, the value of v 1is apmroximetely

'V’:ig
a
The velocity of the waves is therefore

U= - + a

il

<18

Hence the velocity of propagation of the waves is nearly the same for the
towed cable in the air stream as it would be for the cable in a vacuum.
For the cable under consideration, a = 135 feet per second or 92 miles per
hour.

At small angles of attack, the waves traveling down the cable will
be amplified at ailrspeeds greater than 92 miles per hour. In arder to
show the extent of the amplification at various airspeeds and angles of
attack, the amplitude of osclllation at a point on the cable 200 feet fram
the point of attachment to the airplane has been calculated for a unit
amplitude of disturbance at the point of attachment. These results are .
shown in figure k4.

These curves show that for each angle of attack of the cable, the
amplitude of the oscillation increases very rapidly as the speed is
increased beyond a certain value. This rather abrupt onset of violent
motion above a certain speed is apparently in accordance with the observed
behavior of towed airspeed heads. The speed at which the oscillation is
rapidly emplified is shown in figure 4 to dscrease as the angle of attack
of the cable 1s increased up to about 30°, but this speed increases slightly
at 45°. The initial reduction in the speed for instability is caused by
the increase of lift-curve slope of the cable with increase in angle of
attack. At large angles of attack, however, the oscillation causes the
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cable elements to have a camponent of motion parallel to the wind direction.
Damping forces are produced by this motion which cause the speed for
instabllity to lncrease again.

An attempt has been made to determine whether the predictions of the
theory are in reasonable agreement with the observed characteristics of
towed alrspeed heads. It was mentioned previously that the maximum speed
at which a towed airspeed head of the type described has been successfully
used depended. on the type of alrplane fram which it 1s suspended, on the
flap and power settings, and on the location ‘fraom which-it 1s lowered. On
a large alrplane in the flap-down condition, which would be expected to
produce a large disturbance in the wake, the alrspeed head has become
unsteady at speeds as low as 135 miles per hour. In this case the motion
was both lateral and vertical. In the case of an alrplans in the clean
condition in which the alrspeed head was lowered from a position near the
trailing edge of the wing, the head became unstable at 165 miles per hour.
The maximum speed at which such an alrspeed head has ever been known to
remain stable is 275 mlles per hour. When the instability occurs at high
speed, it involves vertical motlions predominantly.

Consideration of these facts leads to the belief that when the
instability occurs at low speeds 1t may be due largely to the direct
effect of disturbance in the weke; whereas when 1t occurs at high speeds,
it is probably the result of a small osclillation caused by a dlsturbance
acting on the cable near the airplane and amplified by the air forces
acting on the ceble. Inasmuch as the amplitude of the forcing motion is
unknown in any particular case, a definite correlation between the thecry
and the observed characteristics of the alrspeed head 1s not possible.
The agreement of the theory with the observations may be shown to be
reasonable, however, on the basis of the very rapid increase in amplifica-
tion if the speed is increased beyond the values which have been reached
in practice.

The curves shown in figure 4 are for a cable which is assumed to be
straight. Usually, the cable will be curved. In arder to estimate the
rate of amplification of a wave traveling down a curved cable, it would
be necessary to divide the cable into a series of segments each of which
might be considered straight and to estimate the amplification teking place
in each segment. This calculation may be made with the aid of a series
of curves such as those shown 1n figure 5, which presents the cable length
required for a disturbance to double in amplitude as a function of alrspesed
for various angles of attack of the cable. These curves were camputed for
the seme cable characteristics as those assumsd previously.

Calculaetions have been made to indicate the characteristlcs of the
assumed cable and alrspeed head at an airspeed of 270 miles per hour because
this speed is close to the maximum speed at which this airspeed head has
been successfully used. The equilibrium shape of such a cable 200 feet
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long when 1t 1s towing a 15-pound alrspeed head has been estimated by

means of a step-by-step solution. This analysis showed that at an airspeed
of 270 miles per hour the cable is essentially straight over all except

the final 30 feet of its length. The straight portion of the cable traills
at an angle such that the cable weight is supported by the aerodynamlic force
on the cable. This angle varies inversely as the speed and is 5° at 270
miles per hour. The final 30 feet of the cable hooks down slightly due to
the welght of the alrspeed head. The tension In the cable increases

from 16 pounds at the lower end to &bout 45 pounds at the alrplane. The
amplification of waves traveling down the cable may therefore be estimated
quite well elmply fram the curve of figure 5 for a temnsion of 30 pounds and
an angle of attack of 5°. This curve indicates that the amplitude would
double each 52.3 feet, so that at a polint 170 feet fram the airplame, the
amplitude would be about 9.5 times the forcling amplitude. This amplitude
would probably be doubled again in the more steeply inclined-portion at |
the end of the cable, though accurate estimations of the motlon near the
end have not been attempted, because reflected waves probably influence

the motion in this reglon. It may be concluded, however, that an amplifica-
tion of roughly 20 times the farcing amplitude would occur at this speed.
The rapld increase in amplitude with further Increase 1n speed mekes it
appear reasonable that 270 miles per hour is close to the maximum speed at
which this type of alrspeed head may be used.

Methods of Increasing the speed at which instabilaty of a towed body
occurs may be examlned on the basis of the theory. Ons method which has
been suggested 1s to Increase the weight of the towed body. Thls method
has been proposed with the obJect of causing the cable to hang at a steeper
angle so that it will be less influenced by the wake of the airpleme. It
has been shown, however, that very large increases 1n weight over thdt
ordinarily used for airspeed heads would be required to influence appreclably
the cable angle at the airplane, inasmuch as the major portion of the cable
is nearly straight and hangs at an angle determined by 1ts own weight
rather than by the weight of the suspended body. Also the increased welght
would Increase the length of cable inclined steeply to the ailr stream,
thereby increasing the amplification of waves. On the other hand, Iincreasing
the welght of the body would ilncrease the ceble tension, which would have
the beneficial effect of increasing the speed of propagation of waves along

the cable which is equal to \/T/u. Finally, a heavier body would respond
less violently to cable oscillations, so that larger cable motion might

be possible without being obJjectionable. Desplte these advantages, it

does not appear that increasing the welght of the towed alrspeed head within
practical 1imits would greatly increase the speed at which it would remeain
steady 1n view of the rapid increase in cable instability with increasing
speed.

A more pramising means of increasing the speed at which violent motions
of alrspeed heads occur appears to be that of reducing the weight of the
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cable. This method would reduce the cable angle and increase the speed of
propagation of waves. It would also reduce the response of the body to a
glven cable disturbence. A possible disadvantage of this method would be
that of allowling the cable to be more influenced by the wake of the airplane.
This problem might be avoilded, however, by supporting the cable on a strut
below the fuselage so that 1t would remain clear of the weke at all times.

The preceding discussion has been concerned mainly with towed alrapeed
heads. The applications of the theory to other towed devices, such as
glliders and targets, is now discussed. A towed airspeed head is ordinarily
& emall, heavy, streamlined body which has small drag in comparison with
its weight. As a result, thls type of towed body introduces a tension
force at the far end of the cable which is fairly independent of airspeed.
On the other hand, gliders and targets have relatively large drag. These
bodles cause a tension force in the cable which increases as the square of
the airspeed. The speed of propagation of waves along the cable, given

by T/h, would therefore increase directly with the alrspeed. It has
been shown that the cable oscillations will not be amplified if the speed
of the waves 1s greater than the airspeed. If the drag of the towed body
is sufficlently large, therefore, the cable oscillations will be stable at
any alrspeed. The equivalent flat-plate area of the body required to make
the velocity of the waves equal to the airspeed is

= 1.56 &
8156p

In practice, a smaller drag might be sufficient, inasmuch as the cable
osclllatlons are not amplified rapidly until the ailrspeed is conslderably
greater than the speed of wave propagation.

No cases are known In which cable oscillations have proved undesirable
in the towing of gliders or targets. In these applications, the drag of
the towed bodies has presumably been great enough to provide stability of the
cable osclllations. :

CONCLUDING REMARKS

It has been found fram a theoretical study of the oscilletions of a
towed cable, that oscillations traveling downwind along the cable are amplified
by aerodynamic forces when the alrspeed is greater than the speed of pro-
pagation of waves along the cable. The oscillations are slightly damped
when the alrspeed is less than the speed of wave propagation. Waves
traveling upwind along the cable are alweys damped, and the damping increases
wlth increasing alrspeed.
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This theory provides a possible explanation for the violent motions of
towed eirspeed heads which appear above a certain speed. These oscilla-
tions are attributed to cable osclllations-which originate near the airplane
and are amplified by aerodynamic forces as they travel down the cable.

Langley Aeronautical Labaratory
National Advisory Cammittee for Aeronautics
Langley Air Force Base, Va., November 15, 1948
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